AWS vs Azure vs GCP: Choosing the Right Cloud for ML Workloads

Published on November 20, 2025

Choosing a cloud platform for machine learning involves trade-offs between features, pricing, ecosystem, and your team's expertise. Having deployed ML solutions on all three major clouds, here's my practical comparison.

ML Platform Overview

Feature AWS SageMaker Azure ML GCP Vertex AI
Notebooks SageMaker Studio Azure ML Studio Workbench
AutoML Autopilot Automated ML AutoML
Training Training Jobs Compute Clusters Custom Training
Deployment Endpoints Managed Endpoints Prediction
MLOps Pipelines Pipelines Pipelines

AWS SageMaker

Strengths

Example: Training on SageMaker

import sagemaker
from sagemaker.pytorch import PyTorch

# Configure estimator
estimator = PyTorch(
    entry_point='train.py',
    source_dir='./src',
    role=sagemaker.get_execution_role(),
    instance_count=1,
    instance_type='ml.p3.2xlarge',
    framework_version='2.0',
    py_version='py310',
    hyperparameters={
        'epochs': 50,
        'batch-size': 64,
        'learning-rate': 0.001
    }
)

# Start training
estimator.fit({'training': 's3://my-bucket/train-data'})

Azure Machine Learning

Strengths

Example: Training on Azure ML

from azure.ai.ml import MLClient, command
from azure.identity import DefaultAzureCredential

# Initialize client
ml_client = MLClient(
    DefaultAzureCredential(),
    subscription_id="your-sub-id",
    resource_group_name="your-rg",
    workspace_name="your-workspace"
)

# Define training job
job = command(
    code="./src",
    command="python train.py --epochs 50 --lr 0.001",
    environment="AzureML-pytorch-2.0-cuda11.8@latest",
    compute="gpu-cluster",
    experiment_name="crack-detection"
)

# Submit job
ml_client.jobs.create_or_update(job)

Google Cloud Vertex AI

Strengths

Example: Training on Vertex AI

from google.cloud import aiplatform

# Initialize
aiplatform.init(project='my-project', location='us-central1')

# Create training job
job = aiplatform.CustomTrainingJob(
    display_name='crack-detection-training',
    script_path='train.py',
    container_uri='us-docker.pkg.dev/vertex-ai/training/pytorch-gpu.2-0:latest',
    requirements=['torchvision', 'pillow']
)

# Run training
model = job.run(
    replica_count=1,
    machine_type='n1-standard-8',
    accelerator_type='NVIDIA_TESLA_V100',
    accelerator_count=1,
    args=['--epochs', '50', '--lr', '0.001']
)

Pricing Comparison

For a typical training workload (8 vCPU, 32GB RAM, V100 GPU, 100 hours/month):

Cloud Instance On-Demand ($/hr) Spot/Preemptible ($/hr)
AWS ml.p3.2xlarge $3.82 $1.15 (70% off)
Azure NC6s_v3 $3.06 $0.92 (70% off)
GCP n1-standard-8 + V100 $2.95 $0.89 (70% off)

When to Choose Each Cloud

Choose AWS SageMaker when:

Choose Azure ML when:

Choose GCP Vertex AI when:

Conclusion

All three clouds offer capable ML platforms. The "best" choice depends on your existing infrastructure, team skills, and specific requirements. For most projects, start with your organization's primary cloud—the ecosystem integration benefits outweigh minor feature differences.